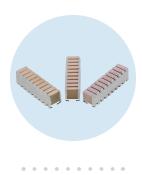


Capacitor Assemblies SV2220

The SV capacitor assemblies are a vertical stacking of ceramic capacitors, offering far superior performance than either aluminum or tantalum electrolytic capacitors. They can be made with up to 10 same size chips with various lead configurations to safeguard against thermal and mechanical stresses and are 100% tested for dielectric withstanding voltage, insulation resistance, capacitance, and dissipation factor.


They are ideally suited for the input and output stages of switch-mode power supplies and DC-DC converters, the SV capacitor assemblies offer several key benefits:

- Reduces the overall circuit board footprint
- · High capacitance to volume ratio
- Low ESR and low ESL
- Capability to handle high ripple currents at high frequencies

ELECTRICAL SPECIFICATIONS

DIELECTRIC WITHSTANDING VOLTAGE:	250% of rated voltage for 5 seconds
INSULATION RESISTANCE AT 25°C:	500 mega-ohm/micro-farad minimum
INSULATION RESISTANCE AT 125°C:	50 mega-ohm/micro-farad minimum
CAPACITANCE AT 25°C:	1.0±0.2 VRMS at 120 Hz
DISSIPATION FACTOR AT 25°C	5% maximum at 1.0±0.2 VRMS at 120 Hz
LIFE TEST:	150% of rated voltage at 125°C for 1000 hours
MOISTURE RESISTANCE:	10 cycles without voltage. MIL-STD-202 M106
THERMAL SHOCK:	MIL-STD-202 M107, test condition A -55°C to +125°C
IMMERSION CYCLING:	MIL-STD-20 M104, condition B
RESISTANCE TO SOLDER HEAT:	MIL-STD-202, M210, condition B 20 seconds at 260°C

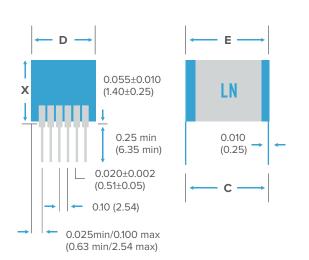
Applications

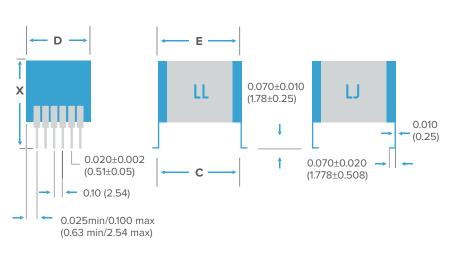
• Input and output stages of switch mode power supplies and DC-DC converters

- Reduces the overall circuit board footprint
- Low ESR and low ESL

- High capacitance to volume ratio
- Superior performance over aluminum or tantalum capacitors

		Capacitance (μF)								
		14	22	27	47	68	100	220		
	25V					-3	-5	-10		
Voltage	50V			-3	-5		-10			
	100V	-3	-5		-10					


Note: Dash number denotes number of capacitors and leads per side.


Typical ESR (Ohms)								
22μF 27μF 47μF 100μF 22								
ESR @ 1kHz	0.0830	0.0680	0.0400	0.0240	0.0110			
ESR @ 10kHz	0.0086	0.0070	0.0040	0.0033	0.0015			
ESR @ 50kHz	0.0044	0.0031	0.0020	0.0013	0.0006			
ESR @ 100kHz	0.0032	0.0022	0.0015	0.0009	0.0004			

LN (STRAIGHT WIRE LEADS)

LJ &LL (BENT WIRE LEADS)

NUMBER	STYLE	C±.025" D (MAX)		E (MAX)	X (MAX)	
-3	LN	.250" (6.35)	.375" (9.5)	.300" (7.62)	.285" (7.24)	
-3	LJ, LL	.250" (6.35)	.375" (9.5)	.300" (7.62)	.300" (7.62)	
-5	LN	.250" (6.35)	.575" (14.6)	.300" (7.62)	.285" (7.24)	
-5	LJ, LL	.250" (6.35)	.575" (14.6)	.300" (7.62)	.300" (7.62)	
-10	LN	.250" (6.35)	1.075" (27.3)	.300" (7.62)	.285" (7.24)	
-10	LJ, LL	.250" (6.35)	1.075" (27.3)	.300" (7.62)	.300" (7.62)	

SV	2220	ВВ	476	M	101	LJ	W	-10	R
SERIES	SIZE	DIELECTRIC	CAPACITANCE	TOLERANCE	VOLTAGE VDCW	LEAD STYLE	PACKAGING	CAPS/LEADS	RoHS
	See Chart	BB = X7R Class II BME	Value in picofarads— Two significant figures, followed by number of zeros: 476 = 47,000,000pF	M = +/-20%	Two significant figures, followed by number of zeros: 250 = 25V 500 = 50V 101 = 100V	LN = Straight LL = L Lead LJ = J Lead	W = Waffle Pack	Number of caps and leads per side	R = RoHS compliant with exemption 7a R = 100% Sn finish on lead No R on P/N = 60Sn/40Pb finish on leads

